关于图像锐化的一份介绍

关于图像锐化的一份介绍

在这篇文章中,我将介绍有关图像锐化有关的知识,具体包括锐化的简单介绍、一阶锐化与二阶锐化等方面内容。

一、锐化

1.1 概念

锐化(sharpening)就是指将图象中灰度差增大的方法,一次来增强物体的轮廓与边缘。因为发生锐化的地方都是发生灰度差突变的地方,所以锐化算法都是基于微分作用。

1.2 作用

一般来说,锐化增强灰度差,除了使物体与轮廓的细节增强后,它还是重要的预处理的一步,为了方便之后的物体检测与识别等。

二、一阶微分锐化方法

一阶微分锐化的计算公式十分简单,具体如下:

2.1 单方向一阶锐化

单方向的一阶锐化即是对某特定方向的边缘信息进行增强。通常,我们通过模板来实现,比如:

代码与处理后图像分别为:(代码中为了增强最后锐化后的效果,采用了垂直方向的锐化,而非上述模板中水平方向的锐化)

import cv2

import numpy as np

import matplotlib.pyplot as plt

image = cv2.imread(r'C:\Users\20349\Desktop\picture\tree.png')

# 定义单方向一阶微分锐化模板

kernel = np.array([[1, 0, -1],

[2, 0, -2],

[1, 0, -1]])

# 应用卷积核到图像上

sharpened_image = cv2.filter2D(image, -1, kernel)

image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

sharpened_image_rgb = cv2.cvtColor(sharpened_image, cv2.COLOR_BGR2RGB)

fig, axes = plt.subplots(1, 2)

# 显示原图和处理后的图像

axes[0].imshow(image_rgb)

axes[0].set_title('Original Image')

axes[0].axis('off') # 不显示坐标轴

axes[1].imshow(sharpened_image_rgb)

axes[1].set_title('Sharpened Image')

axes[1].axis('off') # 不显示坐标轴

plt.show()

具体关于实现锐化部分的函数类似地可以写成代码如下:

def filter_2d(image, kernel):

# 获取图像和卷积核的尺寸

image_height, image_width, *image_channels = image.shape

kernel_height, kernel_width = kernel.shape

# 确保卷积核是奇数尺寸,以便有中心点

if kernel_height % 2 == 0 or kernel_width % 2 == 0:

raise ValueError("卷积核的宽高都应该是奇数")

# 计算填充大小

pad_size_height = kernel_height // 2

pad_size_width = kernel_width // 2

# 创建一个带有边框填充的图像副本,使用零填充

padded_image = cv2.copyMakeBorder(image, pad_size_height, pad_size_height, pad_size_width, pad_size_width,

cv2.BORDER_CONSTANT)

# 如果图像是彩色图像,则需要分别处理每个通道

if len(image_channels) > 0:

channels = cv2.split(padded_image)

output_channels = []

for channel in channels:

output_channel = np.zeros_like(channel)

# 对于每个像素位置应用卷积

for y in range(pad_size_height, image_height + pad_size_height):

for x in range(pad_size_width, image_width + pad_size_width):

region = channel[y - pad_size_height:y + pad_size_height + 1,

x - pad_size_width:x + pad_size_width + 1]

output_channel[y - pad_size_height, x - pad_size_width] = (region * kernel).sum()

output_channels.append(output_channel)

output_image = cv2.merge(output_channels)

else:

# 对于灰度图像直接处理

output_image = np.zeros_like(image)

for y in range(pad_size_height, image_height + pad_size_height):

for x in range(pad_size_width, image_width + pad_size_width):

region = padded_image[y - pad_size_height:y + pad_size_height + 1,

x - pad_size_width:x + pad_size_width + 1]

output_image[y - pad_size_height, x - pad_size_width] = (region * kernel).sum()

return output_image

(该函数代码与实际调用的函数代码略有不同)

此外,在进行了上述步骤后进行取绝对值操作,可以增强对比度,避免负值影响问题等。

2.2 无方向一阶锐化

通过观察处理结果,我们发现单方向一阶微分锐化对于矩形特征的物体处理效果优秀,但对于不规则的物体处理效果有所欠缺,此时就需要无方向一阶微分锐化。

交叉微分锐化

首先是交叉微分锐化,其表达式为:

该方法可以用代码表示为如下,以及其处理结果也如下所示:

def roberts_cross(image):

image_height, image_width = image.shape

output_image = np.zeros_like(image)

# 定义Roberts算子

kernel_x = np.array([[1, 0], [0, -1]])

kernel_y = np.array([[0, -1], [1, 0]])

# 对每个像素应用Roberts算子

for y in range(0, image_height - 1):

for x in range(0, image_width - 1):

region = image[y:y + 2, x:x + 2]

gradient_x = (region * kernel_x).sum()

gradient_y = (region * kernel_y).sum()

output_image[y, x] = np.sqrt(gradient_x ** 2 + gradient_y ** 2)

# 归一化

output_image = cv2.normalize(output_image, None, 0, 255, cv2.NORM_MINMAX)

return output_image.astype(np.uint8)

Sobel锐化

关于Sobel锐化可以用表达式表示为:

其中:

代码以及结果分别为:

def sobel_sharpen(image):

image_float = image.astype(float)

# 定义Sobel算子

kernel_x = np.array([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]])

kernel_y = np.array([[-1, -2, -1], [0, 0, 0], [1, 2, 1]])

# 计算x方向和y方向的梯度

gradient_x = cv2.filter2D(image_float, -1, kernel_x)

gradient_y = cv2.filter2D(image_float, -1, kernel_y)

# 合并两个方向的梯度

gradient_magnitude = np.sqrt(gradient_x ** 2 + gradient_y ** 2)

sharpened_image = image_float + gradient_magnitude

sharpened_image = np.clip(sharpened_image, 0, 255)

return sharpened_image.astype(np.uint8)

Prewitt锐化

如果将刚才的Sobel算法中核进行修改即可得到Prewitt算法,具体Prewitt算法的核为:

其处理结果为:

三、二阶微分锐化方法

Laplacin算法

关于Laplacin算法的模板为:

这个模板可以通过如下的表达式推导得出:

(具体推导过程省略)

那么我们将这个模板用于锐化后得到结果为:

接着,我们为了增强最后Laplacian微分锐化的效果,我们可以对于刚才的模板进行修改,比如:

但要注意在修改这个模板时要注意配平,不然会出现问题。

刚才这个模板得到的结果如下:

为了展示效果,这里再提供一个未配平的模板,如下:

运用这个模板处理后的结果如下:(可以发现这个处理结果十分接近原图)

Wallis算法

如果对于刚才的这些模板中加入对数的处理,就可以得到Wallis算法,这种算法更接近人眼的视觉特性,得到的结果在暗区也可以很好处理,下面是一个模板举例:

处理结果如下:

此上

相关创作